发布时间:2012/11/5 17:40:38 浏览量:1236 【字体:
大 中 小】
在陶瓷刀具
切削加工过程中,始终存在两个摩擦副,即前刀面与切屑间的摩擦副和后刀面与工件间的摩擦副。其中,前者影响刀具前刀面的磨损,后者影响刀具后刀面的磨损和已加工表面质量,前、后刀面的磨损均影响刀具寿命。陶瓷刀具主要用于高速切削场合,切削温度常可高达800~1000℃(甚至更高),切削压力也很大。因此,陶瓷刀具的磨损是机械磨损与化学磨损综合作用的结果,其磨损机制主要包括磨料磨损、粘结磨损、化学反应、扩散磨损、氧化磨损等。
对于晶须增韧陶瓷刀具,由于晶须在热压过程中定向分布于垂直热压轴平面,造成晶须在不同表面上的分布差异,因此晶须增韧陶瓷刀具的耐磨性能与晶须的取向有关,θ=0°表面的耐磨性能最差,而θ=90°表面的耐磨性能最好。当刀具以后刀面磨损为主时,应选择θ=90°表面作为刀具后刀面;当刀具以前刀面磨损为主时,则应选择θ=90°表面作为刀具前刀面。当刀具前、后刀面同时存在较大磨损时,应选择θ=45°表面作为刀具的前(后)刀面,以提高刀具的抗磨损能力。
虽然
陶瓷刀具的磨损与切削条件密切相关,但决定陶瓷刀具磨损特性的主要因素仍是陶瓷材料的组分和微观结构。陶瓷刀具磨损的基本现象是材料的断裂及转移,因此裂纹的形成与扩展将对磨损产生重要影响。陶瓷刀具材料多为复相陶瓷,在晶界处存在玻璃相、气孔、杂质等,且各相之间存在热胀失配和弹性模量的差别。晶界气孔的存在会导致应力集中,气孔作为裂纹源将诱导晶界裂纹,并且由于气孔主要在晶界上产生,裂纹扩展至气孔时与气孔连接,从而加速了裂纹的扩展。Rice等人的研究表明:气孔率的增加使陶瓷刀具的耐磨性能大大降低,弹性模量与热胀失配所产生的过大残余应力会导致材料在未受外载时就产生开裂。由于多晶陶瓷所加的添加剂在烧结过程中主要以玻璃相形式存在于晶界上,在高速切削产生的高温条件下,玻璃相粘度降低而发生塑性流动,导致晶界滑移,并在晶界交界处产生应力集中现象。如果应力集中使得相邻晶粒完全塑性变形,则会使应力松弛,如果不能与邻近晶界变形相适应,则应力集中将使晶界处产生裂纹。裂纹成核后,随着晶界滑移程度的不断增加,将会引起裂纹产生。陶瓷刀具材料晶体中的大量位错为裂纹成核提供了另一种方式,随着磨损过程的不断进行,位错不断增殖,在晶界处就会形成更多因位错而产生的微裂纹,这些裂纹相接就会形成连续裂纹,从而导致陶瓷刀具耐磨性能下降。